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Abstract

A unique scalar parameter arises in the 3-D homogenization model for the beam bundle, which has the significance

of the added fluid area fraction. The parameter is determined by solving a local problem defined on a unit cell, and its

relation to the porosity of the bundle is investigated in this paper. This is made possible by obtaining an analytical

solution of the local problem based on Weierstrass�s doubly periodic functions.
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1. Introduction

Beam bundle is composed of a large number of tubular beams, which are immersed in an acoustic fluid.

The bundle can be regarded as a heterogeneous medium of periodic microstructure with a single beam and

its surrounding fluid identified as a repeating element. In order to describe the dynamic behavior of the

beam bundle, two approaches have been developed since the 1980s. They are the asymptotic homogeni-

zation method and the continuation approach.

Mathematical framework of the asymptotic homogenization method is based upon the work on Ben-

soussan et al. (1978), Sanchez-Palencia (1980), Sanchez-Palencia and Zaoui (1987) and Conca et al. (1995).
Based on this, Schumann (1981a,b) and Brochard and Hammami (1991), Hammami (1990) proposed an

asymptotic homogenization model for the beam bundle. Recently, a 3-D continuum model for the beam

bundle was presented by Zhang (1998a,b,c). It is referred to as a ‘‘unified’’ model, because the two existing

2-D models of Schumann (1981a,b) and Brochard and Hammami (1991), Hammami (1990) can be con-

sidered as special cases of the 3-D model.

The first model based on the continuation approach was proposed by Shinohara and Shimogo (1981) for

tubes with square or hexagonal cross-sections. In this model, the thickness of the gaps between the tubes is
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assumed to be small with respect to the tube�s diameter. However, there is an additional term in the model,

which is proportional to the second derivative of the displacement with respect to the space variables. It was

found that this additional term is important in calculating the modes with significant gradients of dis-

placements. Brochard et al. (1988) presented a homogenization technique close to the continuation method

proposed by Shinohara and Shimogo. By means of this technique, the local mode, in which adjacent tubes
move in opposite directions, is investigated. Cheval et al. (2001) presented an improvement and a gener-

alization of Shinohara and Shimogo�s continuation approach using a substructure technique, for tubes with

square or circular cross-section, whatever the value of the gap separating two adjacent tubes. This method

gives good accuracy for most kinds of tube movements.

A 3-D model was previously formulated by Zhang (1999) using pressure as the fundamental unknown in

the fluid region. As a result, non-symmetry of the coefficient matrices is introduced into the corresponding

finite element solution. To remove the non-symmetry, velocity potential rather than pressure is adopted as

the fundamental unknown in the fluid region in the present paper. As shown by Zhang, the 3-D model has a
transverse isotropic property for the circular cross-sectional beams in tandem. The homogenization

equation of the model can be simplified by replacing its tensor parameters with a scalar parameter rep-

resenting the added fluid area.

Nomenclature

Aab non-added fluid area in unit cell

Bab effective cross-sectional area of beam in unit cell

c speed of sound

Dab added fluid area in unit cell

F body force of the beam

G body force of the fluid

na exterior unit normal to fluid domain on the interface between fluid and beam in unit cell

p pressure of the fluid
R radius of circular cross-section of beam in the original unit cell

r0 radius of circular cross-section of beam in magnified unit cell

vi velocity of the fluid

jX j area of domain of the original unit cell

jY j area of domain of magnified unit cell

wi displacement of the beam

e side length of the original square unit cell

eij strain of the beam
rij stress of the beam

/ velocity potential of the fluid

j density ratio

k fluid volume fraction of the bundle

q density of the fluid

}ðzÞ Weierstrass�s elliptic function

fðzÞ Weierstrass�s Zeta function

hi average value on the unit cell

Subscripts

f fluid

s beam structure
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In this paper, an analytical solution of the local problem is presented in terms of Weierstrass�s doubly

periodic functions. The local solution describes the local field of the interaction of a beam and the sur-

rounding fluid, and it gives rise to a scalar parameter in the 3-D homogenization equations. The scalar

parameter has the significance of the added fluid area fraction.

2. Fundamental equations

Consider the 3-D homogenization equations given in Zhang (1999) where the fluid in the bundle is

treated as compressible and non-viscous. The motion is governed by the continuity equation

_qqf þ �qqfrivi ¼ 0; ð1Þ

the momentum equilibrium equation

�qqf _vvi ¼ Gi 	rip; ð2Þ

and the equation of state

_pp ¼ c2f _qqf : ð3Þ

Elastic beams in the bundle are described in terms of the equation of motion

rjrij þ Fi ¼ �qqs€wwi; ð4Þ

the strain displacement relation

eij ¼ 1
2
ðrjwi þriwjÞ; ð5Þ

and the continuity equation

_qqs þ �qqsri _wwi ¼ 0: ð6Þ

In addition, there are interaction conditions at each interface between beams and fluid:

rabnb ¼ 	pna and vana ¼ _wwana: ð7Þ

Here ri ¼ o=oxi and x ¼ ðx1; x2; x3Þ denotes a global coordinate system on a unit cell, with the x3-axis
pointing along the beam. Summation is indicated by repeated subscripts. Greek subscripts assume the value
1 and 2 while Latin subscripts range from 1 to 3. The above fundamental equations do not include the

general stress–strain relation. In fact, only the tensile stress–strain relation is necessary in our approach,

which is similar to the case in beam theory. Thus, we will introduce the tensile stress–strain relation together

with the simple beam assumption in Section 5.

Eqs. (1)–(7), subject to appropriate boundary conditions of the whole bundle such as side wall condi-

tions, end conditions of beams, surface and bottom conditions of fluid and initial conditions, form a closed

system of equations of the dynamic problem for the beam bundle. The global behaviour of the beam bundle

can be calculated by solving the proposed system. However, this system is difficult to solve due to the large
number of beams. The asymptotic homogenization method provides an alternative way to establish a

simple and yet rigorous mathematical model.
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3. Asymptotic expansion

Consider a beam bundle in which the beams are regularly placed in the fluid. The cross-section of a single

beam with its surrounding fluid is defined to be a unit cell as shown in Fig. 1. The characteristic length l of
the unit cell is assumed to be much smaller than the characteristic dimension L of the bundle, so that

e ¼ l
L

 1: ð8Þ

A local coordinate system y ¼ ðy1; y2Þ is introduced for the unit cell by

ya ¼ xa=e: ð9Þ
Asymptotic expansions of the unknown quantities are postulated such that

p ¼ pð0Þðx; y1; y2; tÞ þ epð1Þðx; y1; y2; tÞ þ � � � ;
w ¼ wð0Þðx; y1; y2; tÞ þ ewð1Þðx; y1; y2; tÞ þ � � � ; etc:

ð10Þ

By replacing the gradient operator ra with ra þ ð1=eÞo=oya and then equating coefficients of like powers of

e on both sides of equations, a set of expanded equations is obtained. The Oðe	1Þ approximations of (1)–(7)

are

vð0Þa;a ¼ 0; ð11Þ

pð0Þ;a ¼ 0; ð12Þ

rð0Þ
ab;b ¼ 0; ð13Þ

wð0Þ
a;b þ wð0Þ

b;a ¼ 0; ð14Þ

wð0Þ
3;a ¼ 0; ð15Þ

wð0Þ
a;a ¼ 0: ð16Þ

The zeroth-order approximations are

_qqð0Þ
f þ �qqfðriv

ð0Þ
i þ vð1Þa;aÞ ¼ 0; ð17Þ

�qqf _vv
ð0Þ
a ¼ Gð0Þ

a 	 ðrapð0Þ þ pð1Þ;a Þ; ð18Þ

Fig. 1. Unit cells.
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�qqf _vv
ð0Þ
3 ¼ Gð0Þ

3 	r3pð0Þ; ð19Þ

_ppð0Þ ¼ c2f _qq
ð0Þ
f ; ð20Þ

rjr
ð0Þ
aj þ rð1Þ

ab;b þ F ð0Þ
a ¼ �qqs€ww

ð0Þ
a ; ð21Þ

eð0Þ33 ¼ r3w
ð0Þ
3 ; ð22Þ

eð0Þ3a ¼ 1
2
ðr3wð0Þ

a þraw
ð0Þ
3 þ wð1Þ

3;aÞ; ð23Þ

_qqð0Þ
s þ �qqsðri _ww

ð0Þ
i þ _wwð1Þ

a;aÞ ¼ 0; ð24Þ

rð0Þ
ab nb ¼ 	pð0Þna; ð25Þ

vð0Þa na ¼ _wwð0Þ
a na: ð26Þ

The first-order approximations are

eð1Þ33 ¼ r3w
ð1Þ
3 ; ð27Þ

rð1Þ
ab nb ¼ 	pð1Þna; ð28Þ

vð1Þa na ¼ _wwð1Þ
a na; etc: ð29Þ

Here a comma indicates differentiation with respect to local coordinates ya.

4. Local problem

Eqs. (14)–(16) give

wð0Þ
a ¼ wð0Þ

a ðx; tÞ and wð0Þ
3 ¼ wð0Þ

3 ðx; tÞ: ð30Þ
Moreover, from (12), (19) and (20), we have

pð0Þ ¼ pð0Þðx; tÞ; qð0Þ
f ¼ qð0Þ

f ðx; tÞ; vð0Þ3 ¼ vð0Þ3 ðx; tÞ: ð31Þ
It is easily verified that the solution to the boundary value problem of (13) and (25) is

rð0Þ
ab ¼ 	pð0Þdab: ð32Þ

Differentiating (18) with respect to ya and using (11) and (31a) yields

pð1Þ;aa ¼ 0: ð33Þ

Differentiating (26) with respect to time t and then substituting (18) into the resulting equation, we obtain
the interaction condition in the form

½Gð0Þ
a 	 ðrapð0Þ þ pð1Þ;a Þ
na ¼ �qqa€ww

ð0Þ
a na: ð34Þ

The solution to (33) that satisfies the boundary condition (34) is

pð1Þ ¼ 	vaðyÞðrapð0Þ þ �qqf €ww
ð0Þ
a 	 Gð0Þ

a Þ þ hpð1Þi; ð35Þ
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where hpð1Þi is the average value of pð1Þ over the magnified unit cell defined by

hpð1Þi ¼ 1

jY j

Z
Yf

pð1Þðx; y; tÞdy; ð36Þ

and the local function va satisfies the following local problem in the magnified unit cell Yf :

va;bb ¼ 0;
va;bnb ¼ na;
va is a doubly periodic function of y1 and y2 with period L;
hvai ¼ 0:

8>><
>>: ð37Þ

Here n1, n2 are the components of the exterior normal to the fluid domain on the interface between the fluid

and the beam in the magnified unit cell.

In order to ascertain that the fluid in the bundle is irrotational and locally incompressible as shown by

(11), the velocity field of the fluid is obtained initially from the solution of (11) and (26) as

vð0Þa ¼ uabhv
ð0Þ
b i þ wab _ww

ð0Þ
b ; ð38Þ

where the local functions uab and wab satisfy respectively the following local problems in the magnified unit
cell Yf :

uab;a ¼ 0;
uabna ¼ 0;
uab is the doubly periodic function of y1 and y2 with period L;
huabi ¼ dab;

8>><
>>: ð39Þ

and

wab;a ¼ 0;
wabna ¼ nb;
wab is the doubly periodic function of y1 and y2 with period L;
hwabi ¼ 0:

8>><
>>: ð40Þ

The two local functions are related by

uab ¼ dab 	 wab: ð41Þ

The first approximation of the rotation is given by 1
e vð0Þ3;2; v

ð0Þ
3;1; ðv

ð0Þ
2;1 	 vð0Þ1;2Þ

n o
. From (31c), we have

vð0Þ3;2 ¼ vð0Þ3;1 ¼ 0. By means of (38) and (41),

vð0Þ2;1 	 vð0Þ1;2 ¼ ðu2bhv
ð0Þ
b i þ w2b _ww

ð0Þ
b Þ;1 	 ðu1bhv

ð0Þ
b i þ w1b _ww

ð0Þ
b Þ;2 ¼ ðu2b;1 	 u1b;2Þhv

ð0Þ
b i þ w2b;1 	 w1b;2Þ _ww

ð0Þ
b

¼ ðu2b;1 	 u1b;2Þhv
ð0Þ
b i 	 _wwð0Þ

b ¼ 0:

vð0Þ3;2 ¼ vð0Þ3;1 ¼ 0 and vð0Þ2;1 	 vð0Þ1;2 ¼ 0 show that the first approximation of the rotation of the fluid field vanishes,
or the fluid is locally irrotational. Hence a velocity potential /ð0Þ may be introduced to satisfy

pð0Þ ¼ 	�qqf
_//ð0Þ: ð42Þ

5. 3-D homogenization equations

Taking the average of (17) and then eliminating vð1Þa via (24) and (29), we can obtain one of the 3-D

homogenization equations in the form
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k
c2f

�
þ 1	 k

jc2s

	
€pp þ �qqfra½h _vvai þ ð1	 kÞ€wwa
 	 kr3r3p þ kr3G3 ¼ 0: ð43Þ

In the above derivation, (19) and (20) and the relation _ppð0Þ ¼ c2s _qq
ð0Þ
s given by Schumann (1981a,b) are taken

into consideration. Here k ¼ jXf j=jX j ¼ jYf j=jY j is the fluid volume fraction or porosity of the bundle. jXf j
and jYf j are the areas of fluid in the unit cell and in the magnified unit cell respectively; jX j and jY j are the

areas of the unit cell and the magnified unit cell respectively. The superscript (0) has been omitted for

simplicity.

pð1Þ in (18) can be eliminated by means of (35). Taking the average of the resulting equation gives the

second homogenization equation

�qqfh _vvai ¼ AabðGb 	rbpÞ þ �qqfDab€wwb; ð44Þ

where

Dab ¼ 1

jY j

Z
Yf

vb;a dy; ð45Þ

and

Aab ¼ ð1	 kÞdab 	 Dab: ð46Þ

Eqs. (43) and (44) can be further simplified by eliminating the mean velocity hvai. The result is thus

k
c2f



þ 1	 k

jc2s

�
€pp 	raðAabrbpÞ 	 kr3r3p þ �qqfraðBab€wwbÞ ¼ 0: ð47Þ

The body force is considered to be constant in the above consideration so that the term kr3G3 is neglected.

In order to derive the last homogenization equation, consider the identityZ
Ys

rð1Þ
ab;b dy ¼

Z
C

rð1Þ
ab dl; ð48Þ

where C ¼ Ys \ Yf is the interface between the beam and the fluid domain in the magnified unit cell.

Substituting (21) and (28) into (48) yieldsZ
Ys

ð	rbr
ð0Þ
ab 	r3r

ð0Þ
3a 	 F ð0Þ

a þ �qqs€ww
ð0Þ
a Þdy 	

Z
Yf

pð1Þ;a dy ¼ 0: ð49Þ

Substituting (32) and (35) into (49), we obtain the result

ð1	 kÞðrapð0Þ þ �qqs€ww
ð0Þ
a 	 F ð0Þ

a Þ þ Dabðrbpð0Þ þ �qqf €ww
ð0Þ
b 	 Gð0Þ

b Þ 	 1

jY j

Z
Ys

r3r
ð0Þ
3a dy ¼ 0; ð50Þ

in which the term

	 1

jY j

Z
Ys

r3r
ð0Þ
3a dy ¼ 	 1

jY j r3

Z
Ys

rð0Þ
3a dy ¼ 	 1

jY j r3V ð0Þ
a ; ð51Þ

where V ð0Þ
a represents the lateral resultant shear in the direction of ya over the cross-section of the beam on

the magnified unit cell.

According to beam theory, the stress–strain relation with the assumption of straight normal can be

expressed in the form

r33 ¼ Ee33 and e3a ¼ 0; a ¼ 1; 2: ð52Þ
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The asymptotic expansions are such that

eð0Þ3a ¼ 0; ð53Þ
and

rð0Þ
33 ¼ Eeð0Þ33 and rð1Þ

33 ¼ Eeð1Þ33 : ð54Þ
Returning to (30) of the local problem, the zeroth-order displacements wð0Þ

a and wð0Þ
3 can be seen as the

transverse and axial displacement of the neutral axis of beams, respectively. The axial displacement of the

neutral axis is not considered, namely

wð0Þ
3 ¼ 0: ð55Þ

Then, according to (22) and (54a), we have

eð0Þ33 ¼ rð0Þ
33 ¼ 0: ð56Þ

Substituting (53) and (55) into (23), we obtain

wð1Þ
3 ¼ 	ðr3wð0Þ

a Þya; ð57Þ
where r3wð0Þ

a stands for the rotation of the cross-section of the beams. This is similar to the displacement

assumption in elementary theory of bending. Therefore, from (27) and (54b), the axial stress component in

the beams is

rð1Þ
33 ¼ 	Eðr3r3wð0Þ

a Þya; ð58Þ
where r3r3wð0Þ

a stands for the curvature of the beams after bending, which is also similar to the result in

elementary theory of bending.

According to beam theory, there is no normal stress on the cross-section of a beam, such thatR
Ys

rð1Þ
33 dy ¼ 0. This requires

R
Ys
ya dy ¼ 0, which means that the origin of the local coordinates must be taken

at the centroid of a magnified cross-section of the beam. Substituting (58) into the bending moment

Ma ¼
R
Ys

r33ya dy ¼ e
R
Ys

rð1Þ
33 ya dy, we have

M ð0Þ
a ¼ 	E r3r3w

ð0Þ
ðaÞ


 �
IðaÞðyÞ; ð59Þ

where the local coordinate axes ya are the principal axes of the moment of area of the magnified cross-

section of the beam. Here, M ð0Þ
a stands for the bending moment in yax3-plane, IaðyÞ is the associated moment

of inertia of the magnified cross-section of the beam.

As mentioned above, the local coordinate axes ya must be the central principal axes of the magnified
cross-section of the beam. This is possible by taking the symmetric axes of the magnified cross-section of the

beam as the local coordinate axes ya. Naturally, the lateral resultant shear V ð0Þ
a can be solved using beam

theory such that

V ð0Þ
a ¼ r3M ð0Þ

a ¼ 	r3EIðaÞðyÞr3r3w
ð0Þ
ðaÞ: ð60Þ

As V ð0Þ
a represents the lateral resultant shear over the cross-section of the magnified beam, it is natural that

the average lateral resultant shear of both of the magnified beam and the real beam is identical, which is

expressed in the form

1

jY j V
ð0Þ
a ¼ 1

jX j S
ð0Þ
a ; ð61Þ

where Sð0Þ
a stands for the lateral resultant shear of the real beam. Sð0Þ

a can be calculated according to (60), if
we use the moment of inertia of the cross-section of the real beam IaðxÞ instead of the magnified beam IaðyÞ.
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Considering (60) and (61), the expression (50) becomes

Mab€wwb þ Babrbp þr3r3

EIðaÞ
jX j r3r3wa


 �
	 ð1	 kÞFa 	 DabGb ¼ 0; ð62Þ

where

Mab ¼ �qqsð1	 kÞdab þ �qqfDab; ð63Þ

Bab ¼ ð1	 kÞdab þ Dab; ð64Þ
and EIðaÞ is the flexural rigidity of the real beam in the xax3-plane. Again, the superscript (0) in (62) has been

omitted.

Eqs. (47) and (62) are the final compact system of 3-D homogenization equations, with the term r3r3p
in (43) describing the influence of the axial flow upon the deflection of the beam.

It is remarkable that only the stress–strain relation and beam simplification are used to determine the

lateral resultant shear, which appears in the second homogenization equation. The components of the

constant body force of the beam and the fluid, F3 and G3, have no influence on the equations.

6. Potential equations

Eqs. (47) and (62) are expressed in terms of the pressure, taken as the fundamental unknown in the fluid

region. As a result, non-symmetry of the coefficient matrices is introduced into the corresponding finite

element solution. To remove this non-symmetry, a velocity potential rather than pressure is adopted as the

fundamental unknown in the fluid region.

Integrating Eq. (47) with respect to time and introducing (42) into the integration, we obtain the
equation

k
c2f



þ 1	 k

jc2s

�
€// 	 Aabrarb/ 	 kr3r3/ 	 Babra _wwb ¼ 0: ð65Þ

Similarly, Eq. (62) is rewritten as

Mab€wwb 	 �qqfBabrb
_// þr3r3

EI
jX j r3r3wa


 �
	 ð1	 kÞFa 	 DabGb ¼ 0: ð66Þ

In the axial direction (x3-axis), the system contains fourth order derivatives of wa and second order

derivatives of /. This indicates that end conditions for both ends of the beams together with one free

surface condition and one bottom condition of fluid are necessary to complete the formulation of the

boundary-value problem. The global behaviour of the beam bundle can then be determined by solving the

boundary-value problem.

7. Scalar parameter

In the homogenization Eqs. (65) and (66), a tensor parameter Dab appears. This tensor is symmetric in

the two subscripts due to the fact that

Dab ¼ 1

jY j

Z
Yf

vb;a dy ¼ 1

jY j

Z
C

vbna dl ¼
ð37bÞ 1

jY j

Z
C

vbva;cnc dl

¼ 1

jY j

Z
Yf

ðvbva;cÞ;c dy ¼ð37aÞ 1

jY j

Z
Yf

vb;cva;c dy; ð67Þ
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where

Dab ¼ Dba: ð68Þ
In addition, the local problem on the magnified unit cell has symmetry in the form

v1ðy1; y2Þ ¼ v2ð	y2; y1Þ ¼ vðy1; y2Þ; ð69Þ
when both points ðy1; y2Þ and ð	y2; y1Þ are in the fluid region Yf . For beams with circular cross-section

arranged in tandem, such symmetry is satisfied. Substituting (69) into the definition of Dab (45), we have

D11 ¼ D22 ¼ D and D12 ¼ 	D21: ð70Þ
It then follows from Eqs. (68) and (70) that the symmetric tensor Dab is isotropic, i.e.

Dab ¼ Ddab: ð71Þ
Subsequently, in view of (46), (63) and (64), all the following tensors are also found to be isotropic such that

Aab ¼ Adab; Bab ¼ Bdab and Mab ¼ Mdab; ð72Þ
where

A ¼ k 	 D; ð73Þ

B ¼ 1	 k þ D; ð74Þ
and

M ¼ �qqsð1	 kÞ þ �qqfD: ð75Þ
Hence, a unique scalar parameter D in the 3-D homogenization equations is obtained.

All the parameters D, A and B are non-dimensional. As can be seen from the definition of M in (75), the

significance of the term �qqfD is the added fluid mass per unit cell per unit length of the beam. Hence, D
represents the added fluid area fraction. According to (74) B represents the effective area fraction of the

beam, which is the total area of the beam and the added fluid divided by the area of the unit cell. Moreover,

(73) indicates that A is the area fraction of the fluid that is not added onto the beam. As all the tensors Aab,

Bab and Dab are isotropic, the added fluid has an equal thickness around the beam. A, B and D are illustrated

in Fig. 2.

Substituting (71) and (72) into (65) and (66), we obtain the equations in velocity potential with one scalar

parameter as

k
c2f



þ 1	 k

jc2s

�
€// 	 Arara/ 	 kr3r3/ 	 Bra€wwa ¼ 0; ð76Þ

and

M €wwa 	 �qqfBra
_// þr3r3

EI
jX j r3r3wa


 �
	 ð1	 kÞFa 	 DGa ¼ 0: ð77Þ

Fig. 2. Significance of A, B and D.
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8. Solution of local problem

In view of (69), the local problem (37) can be rewritten as

v;bb ¼ 0;
v;bnb ¼ n1;
v is the doubly periodic function of y1 and y2 with period L;
hvi ¼ 0;

8>><
>>: ð78Þ

on the magnified unit cell of length L. The size of the cell indicates that the period of the local function

vðy1; y2Þ is L. To enable the doubly periodic Weierstrass�s elliptic function with periods x1 ¼ 1 and x2 ¼ i to
express vðy1; y2Þ, the period of variables y1 and y2 have to be changed from L to 1. Thus, a new variable ya=L
and a new local function v=L are introduced. However, it is not necessary to perform the transformation.
Instead, one simply takes the local problem (78) and the parameter D in (45) and (71) on a normalized unit

cell with side length 1 instead of a magnified unit cell with side length L. Correspondingly, Ys and Yf are used

in the normalized unit cell.

Since Ys is a circular domain, a polar coordinate system ðr; hÞ is more convenient. Therefore, the in-

teraction condition (78b) becomes

ov
or

����
r¼r0

¼ cos h; ð79Þ

where r0 is the normalized radius of the beam.

In order to satisfy (78a), vðy1; y2Þ is expressed as the real part of an analytic function f ðzÞ, i.e.
vðy1; y2Þ ¼ vðr; hÞ ¼ Reðf ðzÞÞ; ð80Þ

in which z ¼ y1 þ iy2 ¼ reih. Similar to Parton and Kudryiavtsev (1993), Nie et al. (1998) proposed to ex-

press f ðzÞ in terms of the Weierstrass�s functions as follows:

f ðzÞ ¼ A0 z
�

	 1

p
1ðzÞ

	
þ
X1
k¼0

A2kþ4r2kþ4
0

}ð2kþ1ÞðzÞ
ð2k þ 2Þ! ; ð81Þ

where A0, A2kþ4 are unknown real constants, }ðzÞ, 1ðzÞ are Weierstrass�s elliptic function and Zeta function

respectively. The Laurent series expansions of the Weierstrass�s function can be expressed as (Chan-

drasekharan, 1985)

}ðzÞ ¼ 1

z2
þ
X1
j¼1

bjz2j;

1ðzÞ ¼ 1

z
	
X1
j¼1

1

2jþ 1
bjz2jþ1;

}ð2kþ1ÞðzÞ ¼ 	ð2k þ 2Þ! 1

z2kþ3
þ
X1
j¼0

ð2jþ 2k þ 2Þ!
ð2jþ 1Þ! bjþkþ1z2jþ1;

ð82Þ

where

b1 ¼ 3
X1

m¼	1

X1
n¼	1

1

ðmþ inÞ4
;

b2 ¼ 5
X1

m¼	1

X1
n¼	1

1

ðmþ inÞ6
¼ 0; ð83Þ
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bj ¼
3

ð2jþ 3Þðj	 2Þ
Xj	2

k¼1

bk � bj	k	1; j ¼ 3; 4; 5; . . .

Due to the periodic properties of Weierstrass�s functions, (80) satisfies (78c). It is also obvious that f ðzÞ is an
odd function, the constraint condition (78d) is thus satisfied. Substitution of (81) and (82) into (79) leads to

a set of algebraic equations for A0, A2kþ4, k ¼ 0; 1; 2; . . . It can be shown that the first N coefficients

Fk ¼ A2kþ2, k ¼ 1;N , satisfy the following symmetrical matrix equation

½C
ðF1; F2; . . . ; FNÞT ¼ ðg1; g2; . . . ; gN ÞT; ð84Þ
where

½C
 ¼ ½C
T ¼

c11 þ 3 c12 . . . c1N
c21 c22 þ 5 . . . c2N
. . . . . . . . . . . .
cN1 cN2 . . . cNN þ 2N þ 1

2
664

3
775; ð85Þ

cjk ¼ r2jþ2kþ2
0

ð2jþ 2kÞ!
ð2jÞ!ð2kÞ! bjþk

�
	 r20

pr20 þ 1
bjbk

	
; ð86Þ

and

gj ¼ 	 r2jþ2
0

pr20 þ 1
bj: ð87Þ

Moreover, A0 is given by

A0 ¼
pr20

pr20 þ 1
1

"
	
X1
k¼1

Fkr2kþ2
0 bk

#
: ð88Þ

Finally, the local function v can be expressed in terms of coefficients A0 and Fk in the form

vðy1; y2Þ ¼ vðr; hÞ ¼ Re A0

 "
þ
X1
k¼1

r2kþ2
0 Fkbk

!
z

	 A0

1

pz

X1
j¼1

A0

p
1

2jþ 1
bj

 
þ
X1
k¼1

ð2jþ 2kÞ!
ð2jþ 1Þ!ð2kÞ! r

2kþ2
0 Fkbjþk

!
z2jþ1 	

X1
k¼1

r2kþ2
0 Fk

1

z2kþ1

#
:

ð89Þ

Taking into account of (45) and (71), we arrive at the formula

D ¼
Z
Yf

v;1 dy1 dy2 ¼
Z

C
vn1 ds ¼ 	r0

Z 2p

0

vðr0; hÞ cos hdh: ð90Þ

Substituting (88) and (89) into (90), D can now be expressed in terms of Fk and bk as

D ¼ pr20
pr20 þ 1

1

 
	 pr20 	 2

X1
k¼1

Fkbkr2kþ2
0

!
: ð91Þ

Finally, using the fact that

k ¼ jYf j
jY j ¼ 1	 pr20; ð92Þ
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we obtain the expression for D as a function of the porosity k of the bundle as

D ¼ 1	 k
2	 k

k

"
	 2

X1
k¼1

Fkbk
1	 k

p


 �kþ1
#
: ð93Þ

As 0 < r0 6 1=2, the range of k is restricted to 1	 p=4 < k6 1.

For the purpose of comparison, numerical computations have been carried out using the following
truncated form:

DN ¼ 1	 k
2	 k

k

"
	 2

XN
k¼1

Fkbk
1	 k

p


 �kþ1
#
: ð94Þ

With N ¼ 1, 2, 5, 6, 7, 8, the DN � k curves are illustrated in Fig. 3. Results show that, for the case of N ¼ 1,

2, 5, 6, 7, as compared with that of N ¼ 8, the maximum errors due to truncation for D are 18.16%, 10.09%,
1.91%, 0.996% and 0.398%, respectively. It indicates that N ¼ 5 is sufficient for convergence of the series in

(91).

In addition to the above, Zhang (1999) also derived the relationships between the equivalent sound speed

and porosity. In the case where the beams are fixed, the equivalent sound speed is given by

ceq ¼ cf

ffiffiffiffiffiffiffiffiffiffiffiffi
1	 D

k

r
; ð95Þ

and in the case where the beams move in phase with the fluid, the relationship is then

ceq ¼ cf

ffiffiffiffiffiffiffiffiffiffiffi
2

1	 k

r
; for 1	 k 
 1: ð96Þ

9. Conclusion

A 3-D homogenization model for the beam bundle is given in this paper. The model is formulated in

terms of velocity potential. Only the stress–strain relationship and beam simplifications are needed to

determine the lateral resultant shear, which appears in the second homogenization equation. The axial

components of the constant body force of the beam and the fluid have no influence on the equations. For

the circular cross-sectional beams arranged in tandem, symmetry gives rise to a scalar parameter in the
governing equations having the significance of the added fluid area fraction per single beam. In order to

determine this parameter, a local problem is solved and a closed-form series solution is obtained. The

Fig. 3. Change of non-dimensional added fluid area with fluid volume fraction of the bundle.
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proposed method is based on Weierstrass�s periodic functions, which can be used to express the solution as

a rapidly convergent series. In addition, it is found that the scalar parameter D is directly related to the

porosity k of the bundle.

Based on the development in this paper, it will be interesting to extend to bundles with tubes in other
configurations. Also, it would be appropriate to point out that limitation exists in homogenization methods

and it would be necessary to carry out comparisons with experimental data or heterogeneous calculations.

These will form part of the authors� future work.
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