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Abstract

A unique scalar parameter arises in the 3-D homogenization model for the beam bundle, which has the significance
of the added fluid area fraction. The parameter is determined by solving a local problem defined on a unit cell, and its
relation to the porosity of the bundle is investigated in this paper. This is made possible by obtaining an analytical
solution of the local problem based on Weierstrass’s doubly periodic functions.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Beam bundle is composed of a large number of tubular beams, which are immersed in an acoustic fluid.
The bundle can be regarded as a heterogeneous medium of periodic microstructure with a single beam and
its surrounding fluid identified as a repeating element. In order to describe the dynamic behavior of the
beam bundle, two approaches have been developed since the 1980s. They are the asymptotic homogeni-
zation method and the continuation approach.

Mathematical framework of the asymptotic homogenization method is based upon the work on Ben-
soussan et al. (1978), Sanchez-Palencia (1980), Sanchez-Palencia and Zaoui (1987) and Conca et al. (1995).
Based on this, Schumann (1981a,b) and Brochard and Hammami (1991), Hammami (1990) proposed an
asymptotic homogenization model for the beam bundle. Recently, a 3-D continuum model for the beam
bundle was presented by Zhang (1998a,b,c). It is referred to as a “unified” model, because the two existing
2-D models of Schumann (1981a,b) and Brochard and Hammami (1991), Hammami (1990) can be con-
sidered as special cases of the 3-D model.

The first model based on the continuation approach was proposed by Shinohara and Shimogo (1981) for
tubes with square or hexagonal cross-sections. In this model, the thickness of the gaps between the tubes is
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Nomenclature

Ayp non-added fluid area in unit cell

By effective cross-sectional area of beam in unit cell

c speed of sound

Dy added fluid area in unit cell

F body force of the beam

G body force of the fluid

n, exterior unit normal to fluid domain on the interface between fluid and beam in unit cell
p pressure of the fluid

R radius of circular cross-section of beam in the original unit cell
ro radius of circular cross-section of beam in magnified unit cell
v; velocity of the fluid

|X| area of domain of the original unit cell

|Y] area of domain of magnified unit cell

w; displacement of the beam

& side length of the original square unit cell

& strain of the beam

gy stress of the beam

¢ velocity potential of the fluid

K density ratio

A fluid volume fraction of the bundle

0 density of the fluid

p(z)  Weierstrass’s elliptic function

{(2) Weierstrass’s Zeta function

() average value on the unit cell

Subscripts

f fluid

s beam structure

assumed to be small with respect to the tube’s diameter. However, there is an additional term in the model,
which is proportional to the second derivative of the displacement with respect to the space variables. It was
found that this additional term is important in calculating the modes with significant gradients of dis-
placements. Brochard et al. (1988) presented a homogenization technique close to the continuation method
proposed by Shinohara and Shimogo. By means of this technique, the local mode, in which adjacent tubes
move in opposite directions, is investigated. Cheval et al. (2001) presented an improvement and a gener-
alization of Shinohara and Shimogo’s continuation approach using a substructure technique, for tubes with
square or circular cross-section, whatever the value of the gap separating two adjacent tubes. This method
gives good accuracy for most kinds of tube movements.

A 3-D model was previously formulated by Zhang (1999) using pressure as the fundamental unknown in
the fluid region. As a result, non-symmetry of the coefficient matrices is introduced into the corresponding
finite element solution. To remove the non-symmetry, velocity potential rather than pressure is adopted as
the fundamental unknown in the fluid region in the present paper. As shown by Zhang, the 3-D model has a
transverse isotropic property for the circular cross-sectional beams in tandem. The homogenization
equation of the model can be simplified by replacing its tensor parameters with a scalar parameter rep-
resenting the added fluid area.
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In this paper, an analytical solution of the local problem is presented in terms of Weierstrass’s doubly
periodic functions. The local solution describes the local field of the interaction of a beam and the sur-
rounding fluid, and it gives rise to a scalar parameter in the 3-D homogenization equations. The scalar
parameter has the significance of the added fluid area fraction.

2. Fundamental equations

Consider the 3-D homogenization equations given in Zhang (1999) where the fluid in the bundle is
treated as compressible and non-viscous. The motion is governed by the continuity equation

pr + prViv = 0, (1)
the momentum equilibrium equation

pivi = G; — Vip, (2)
and the equation of state

p= C?/’f- 3)
Elastic beams in the bundle are described in terms of the equation of motion

Vjoy + F = pwi, (4)
the strain displacement relation

&y = 5(Vw; + Viw)), (5)
and the continuity equation

pe + pViw; = 0. (6)
In addition, there are interaction conditions at each interface between beams and fluid:

Oupnp = —pn, and  v,n, = W,n,. (7)

Here V; = 0/0x; and x = (x,x,,x3) denotes a global coordinate system on a unit cell, with the x;-axis
pointing along the beam. Summation is indicated by repeated subscripts. Greek subscripts assume the value
1 and 2 while Latin subscripts range from 1 to 3. The above fundamental equations do not include the
general stress—strain relation. In fact, only the tensile stress—strain relation is necessary in our approach,
which is similar to the case in beam theory. Thus, we will introduce the tensile stress—strain relation together
with the simple beam assumption in Section 5.

Eqgs. (1)-(7), subject to appropriate boundary conditions of the whole bundle such as side wall condi-
tions, end conditions of beams, surface and bottom conditions of fluid and initial conditions, form a closed
system of equations of the dynamic problem for the beam bundle. The global behaviour of the beam bundle
can be calculated by solving the proposed system. However, this system is difficult to solve due to the large
number of beams. The asymptotic homogenization method provides an alternative way to establish a
simple and yet rigorous mathematical model.
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3. Asymptotic expansion

Consider a beam bundle in which the beams are regularly placed in the fluid. The cross-section of a single
beam with its surrounding fluid is defined to be a unit cell as shown in Fig. 1. The characteristic length / of
the unit cell is assumed to be much smaller than the characteristic dimension L of the bundle, so that

/
A local coordinate system y = (y1,)») is introduced for the unit cell by
Yy = Xy /E 9)

Asymptotic expansions of the unknown quantities are postulated such that

P :P<0)(XJ/1J/2¢ t) + SP(])(X»M»)/ZJ) + -y

(10)
w = W<0>(xaylay27 t) =+ SW(I)(x7y17y27t) +---, etc.

By replacing the gradient operator V, with V, + (1/¢)0/0y, and then equating coefficients of like powers of
¢ on both sides of equations, a set of expanded equations is obtained. The O(¢~!) approximations of (1)—(7)
are

v =0, (11)
Py =0, (12)
ol =0, (13)
wiy +wi) =0, (14)
wi) =0, (15)
wi?) = 0. (16)
The zeroth-order approximations are
p + oV 4 oll)) =0, (17)
pity) = G = (Vap” +p), (18)
Y,
Tl [ *
| \ L, V=%, /€ N | ya—/L, . >y
v x Ty I % ¢
=1 = £ — =1 -
(a) unit cell (b) magnified cell (c) normalised cell

Fig. 1. Unit cells.
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piiy) =Gy = Vip, (19)
=, (20)
Vo + o+ EY = pil, (21)
&y = Vo, (22)
ag(;) = %(V w&m + Vawgo) + wgli), (23)
PO+ (V" ) = 0, (24)
Giﬁ)nﬁ =—pn,, (25)
1On, = wOp, (26)
The first-order approximations are
ey = Vawl, (27)
g = —pWn,, (28)
vil)nx = wgl)na, etc. (29)

Here a comma indicates differentiation with respect to local coordinates y,.

4. Local problem

Egs. (14)-(16) give

wio) = W;O) (x,#) and w = W(30) (x,1). (30)
Moreover, from (12), (19) and (20), we have

PO =p 0, o = o), o = oV (x,0). (31)
It is easily verified that the solution to the boundary value problem of (13) and (25) is

0&0) = —p8,. (32)

Differentiating (18) with respect to y, and using (11) and (31a) yields
Pl =0. (33)

Differentiating (26) with respect to time ¢ and then substituting (18) into the resulting equation, we obtain
the interaction condition in the form

(G — (Vp¥ + P = pivn,. (34)
The solution to (33) that satisfies the boundary condition (34) is
p(l) = _/(x(y)(vxpw) + ﬁfwg()) - ng())) + <p(l)>a (35)
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where (p'V) is the average value of p") over the magnified unit cell defined by

1

) =1 [ P r0dy (36)
Y]y

and the local function y, satisfies the following local problem in the magnified unit cell ¥;:

X:z,/i/j = 07

Lo plp = M o . . . (37)

1, 1s a doubly periodic function of y; and y, with period L,

(1) = 0.

Here n;, n, are the components of the exterior normal to the fluid domain on the interface between the fluid
and the beam in the magnified unit cell.

In order to ascertain that the fluid in the bundle is irrotational and locally incompressible as shown by
(11), the velocity field of the fluid is obtained initially from the solution of (11) and (26) as

o)) = %ﬁ@/g )ty /;W/; ) (38)

where the local functions ¢,; and v, satisfy respectively the following local problems in the magnified unit
cell Y;:

(pa/f,a( = 07
q)a/fn:x = 07 ) ) ) ) ) (39)
@, 1s the doubly periodic function of y; and y, with period L,
<(paﬂ> = 51/3a
and
lpaﬁ,o( = 0)
lp(x/fn“ = ng, (40)
¥, 1s the doubly periodic function of y; and y, with period L,
<lpo¢ﬂ> =0.
The two local functions are related by
Pop = Oup — ‘h/r (41)

The ﬁrst approximation of the rotation is given by {vgoz), vgof, (u<2°f - 0505)} From (31c), we have
u§°2> = 031 = 0. By means of (38) and (41),
0 _ 40 0 . (0 0 . (0
U(21> - U = (@2/;<Uﬁ )+ %/;W/; )1 (‘/’m@ﬁ; )> + ‘plﬁwji )),2 = (@ap1 — (Plﬁ,2)<U;j)> + Vo1 — lpl/f,z)wjf)
0 0
= ((P2/31 - (P1ﬂ2)<U< )> - W;;) =0.
(0)

Uy, = v3 , =0 and 02 1 - v1 2 = 0 show that the first approx1mat10n of the rotation of the fluid field vanishes,
or the fluid is locally irrotational. Hence a velocity potential ¢*) may be introduced to satisfy

= _ﬁf¢ : (42)

5. 3-D homogenization equations

Taking the average of (17) and then eliminating v{!) via (24) and (29), we can obtain one of the 3-D
homogenization equations in the form
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|:C—/1% + %]p + ﬁfVa[<Ua> + (1 — /I)W,] — /IV3V3P + JVV3G3 =0. (43)
In the above derivation, (19) and (20) and the relation p© = ¢2p(¥ given by Schumann (1981a,b) are taken
into consideration. Here A = |X;|/|X| = |¥;|/|Y]| is the fluid Volume fraction or porosity of the bundle. |X¢|
and |Y;| are the areas of fluid in the unit cell and in the magnified unit cell respectively; |[X| and |Y| are the
areas of the unit cell and the magnified unit cell respectively. The superscript (0) has been omitted for
simplicity.

p in (18) can be eliminated by means of (35). Taking the average of the resulting equation gives the

second homogenization equation

Pi(bs) = Aup(Gp — Vp) + peDagivg, (44)
where

D=y [ ey (45)

Y[ Jy

and

Asp = (1 = 2)8p — Dp. (46)
Egs. (43) and (44) can be further simplified by eliminating the mean velocity (v,). The result is thus

(ci% + IK;A)p V. (4.5Vpp) — AV3V3p + peV,(Bugivg) = 0. (47)

The body force is considered to be constant in the above consideration so that the term AV;Gj; is neglected.
In order to derive the last homogenization equation, consider the identity

where I' = ¥, N ¥; is the interface between the beam and the fluid domain in the magnified unit cell.
Substituting (21) and (28) into (48) yields

[ 90 = Vaol) < FO 4 i@y - [ oy =o. (49)
Ys Yr
Substituting (32) and (35) into (49), we obtain the result
(1= D(Vap® + pyin? = )+ DV + ey = Gy = / Vo, dy =0, (50)
in which the term
)d _ dy = — — 51
) T = [ A == e
where V*) represents the lateral resultant shear in the direction of y, over the cross-section of the beam on
the magnified unit cell.

According to beam theory, the stress—strain relation with the assumption of straight normal can be
expressed in the form

033 = E833 and &3y = 0, o= 1,2 (52)
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The asymptotic expansions are such that

&) =0, (53)
and

afg) = Eegg) and agg) = Eeg;). (54)

Returning to (30) of the local problem, the zeroth-order displacements w'® and wgm can be seen as the
transverse and axial displacement of the neutral axis of beams, respectively. The axial displacement of the
neutral axis is not considered, namely

W — 0. (55)
Then, according to (22) and (54a), we have

0 o0 Z 0, (6)
Substituting (53) and (55) into (23), we obtain

wgl) = —(V3w§0))ya, (57)

where V3w stands for the rotation of the cross-section of the beams. This is similar to the displacement
assumption in elementary theory of bending. Therefore, from (27) and (54b), the axial stress component in
the beams is

%y = —E(V3Viw?)y,, (58)

where V3V3w§°> stands for the curvature of the beams after bending, which is also similar to the result in
elementary theory of bending.

According to beam theory, there is no normal stress on the cross-section of a beam, such that
/ ¥, agg) dy = 0. This requires fYS v, dy = 0, which means that the origin of the local coordinates must be taken
at the centroid of a magnified cross-section of the beam. Substituting (58) into the bending moment

M, = fY o3y, dy = gfys ag;)ya dy, we have
M = —E<V3V3WEZ;>I<1)(J’)7 (59)

where the local coordinate axes y, are the principal axes of the moment of area of the magnified cross-
section of the beam. Here, MD((O) stands for the bending moment in y,x;-plane, Z,(y) is the associated moment
of inertia of the magnified cross-section of the beam.

As mentioned above, the local coordinate axes y, must be the central principal axes of the magnified
cross-section of the beam. This is possible by taking the symmetric axes of the magnified cross-section of the
beam as the local coordinate axes y,. Naturally, the lateral resultant shear V(¥ can be solved using beam
theory such that

o

VO = VM = —V3El () V3Vawy). (60)

As V) represents the lateral resultant shear over the cross-section of the magnified beam, it is natural that
the average lateral resultant shear of both of the magnified beam and the real beam is identical, which is
expressed in the form
1 1
0 = g0 61
vl x| (61)

where S'% stands for the lateral resultant shear of the real beam. S can be calculated according to (60), if

we use the moment of inertia of the cross-section of the real beam 7, (x) instead of the magnified beam 7, (y).
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Considering (60) and (61), the expression (50) becomes

" Ely) (1= NE — _ 6
M, gwg + B,gVpp + V3V3 x| ViViw, (1 = A)F, — DGy = 0, (62)
where
Myp = ps(1 — 4)8up + prDyg, (63)
Bug = (1 — A)0up + Do, (64)

and El,) is the flexural rigidity of the real beam in the x,x3;-plane. Again, the superscript (0) in (62) has been
omitted.

Egs. (47) and (62) are the final compact system of 3-D homogenization equations, with the term V;Vs3p
in (43) describing the influence of the axial flow upon the deflection of the beam.

It is remarkable that only the stress—strain relation and beam simplification are used to determine the
lateral resultant shear, which appears in the second homogenization equation. The components of the
constant body force of the beam and the fluid, F3 and Gj3, have no influence on the equations.

6. Potential equations

Eqgs. (47) and (62) are expressed in terms of the pressure, taken as the fundamental unknown in the fluid
region. As a result, non-symmetry of the coefficient matrices is introduced into the corresponding finite
element solution. To remove this non-symmetry, a velocity potential rather than pressure is adopted as the
fundamental unknown in the fluid region.

Integrating Eq. (47) with respect to time and introducing (42) into the integration, we obtain the
equation

1=\~ .
(? T ) ¢ — AV Vg — ANV3Vsp — By Vi = 0. (65)
f s
Similarly, Eq. (62) is rewritten as
: EI
Mx/;ﬁ//; - /_)fB“/gVﬁ(]S + V3V3 (ﬂVg.VﬂV“) — (1 — )V)F& — DaﬁGﬁ =0. (66)

In the axial direction (x3-axis), the system contains fourth order derivatives of w, and second order
derivatives of ¢. This indicates that end conditions for both ends of the beams together with one free
surface condition and one bottom condition of fluid are necessary to complete the formulation of the
boundary-value problem. The global behaviour of the beam bundle can then be determined by solving the
boundary-value problem.

7. Scalar parameter

In the homogenization Eqgs. (65) and (66), a tensor parameter D,; appears. This tensor is symmetric in
the two subscripts due to the fact that

1 / 1 @) 1
D“ = Tv Xocdy:_/xnfldl: _/XXD/«;nwdl
PTILT TI [v] J, ot

1 (37a) 1
m/}/(XﬁXoc‘}'),ydy m/y}{ﬁ‘},}fm,dy, (67)
f f
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where

D,s = Dg,. (68)
In addition, the local problem on the magnified unit cell has symmetry in the form

210 02) = 2a(=2, 1) = 11, 3»), (69)

when both points (y,)») and (—y»,y) are in the fluid region ¥;. For beams with circular cross-section
arranged in tandem, such symmetry is satisfied. Substituting (69) into the definition of D,z (45), we have

Dy =Dy =D and D, = —D,. (70)
It then follows from Eqs. (68) and (70) that the symmetric tensor D, is isotropic, i.e.

D, = Dé,p. (71)
Subsequently, in view of (46), (63) and (64), all the following tensors are also found to be isotropic such that

Ayp = A0y, Bug = B, and M,z = M, (72)
where

A=2-D, (73)

B=1-/+D, (74)
and

M = p(1—7) + p;D. (75)

Hence, a unique scalar parameter D in the 3-D homogenization equations is obtained.

All the parameters D, A and B are non-dimensional. As can be seen from the definition of M in (75), the
significance of the term p;D is the added fluid mass per unit cell per unit length of the beam. Hence, D
represents the added fluid area fraction. According to (74) B represents the effective area fraction of the
beam, which is the total area of the beam and the added fluid divided by the area of the unit cell. Moreover,
(73) indicates that 4 is the area fraction of the fluid that is not added onto the beam. As all the tensors 4,;,
B,s and D, are isotropic, the added fluid has an equal thickness around the beam. 4, B and D are illustrated
in Fig. 2.

Substituting (71) and (72) into (65) and (66), we obtain the equations in velocity potential with one scalar
parameter as

1=\ +
(2 + z> $ — AV, Y, — IV3Vsp — BV i, = 0, (76)
¢t KC?
and
) ~ . El
M, — prVd(b + V5V; (mv3v3w1) — (1 — i)FA - DG, =0. (77)

L D|X| A:Non-Added Fluid Area Fraction

B: Effective Beam Area Fraction

D: Added Fluid Area Fraction

~
N—X]

Fig. 2. Significance of 4, B and D.
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8. Solution of local problem

In view of (69), the local problem (37) can be rewritten as

App = 0,

Zpp = 1 L . . . (78)
% 1s the doubly periodic function of y; and y, with period L,

(x) =0,

on the magnified unit cell of length L. The size of the cell indicates that the period of the local function
7(v1,») is L. To enable the doubly periodic Weierstrass’s elliptic function with periods w; = 1 and w, =i to
express y(y1,»), the period of variables y; and y, have to be changed from L to 1. Thus, a new variable y, /L
and a new local function y/L are introduced. However, it is not necessary to perform the transformation.
Instead, one simply takes the local problem (78) and the parameter D in (45) and (71) on a normalized unit
cell with side length 1 instead of a magnified unit cell with side length L. Correspondingly, ¥; and ¥; are used
in the normalized unit cell.
Since ¥, is a circular domain, a polar coordinate system (r,6) is more convenient. Therefore, the in-
teraction condition (78b) becomes
oy
or .. = cos 6, (79)
where 7y is the normalized radius of the beam.
In order to satisfy (78a), y()1,)») is expressed as the real part of an analytic function f(z), i.e.

x0n,32) = 1(r, 0) = Re(f(2)), (80)
in which z = y; 4 iy, = re!’. Similar to Parton and Kudryiavtsev (1993), Nie et al. (1998) proposed to ex-
press f(z) in terms of the Weierstrass’s functions as follows:

ke-+4 P! >(Z)

f(2) =40 {Z—C } +ZA21<+4V0 kT2 (81)

where Ay, 4.4 are unknown real constants, p(z), ¢(z) are Weierstrass’s elliptic function and Zeta function
respectively. The Laurent series expansions of the Weierstrass’s function can be expressed as (Chan-
drasekharan, 1985)

1 - )
— Z_2 + Zl:ijzj,
J=

@ =335

_ 2/+1
z < 2j + lb (82)

1 & (2 + 2k +2)! ,
(2k+1) _ . 2j+1
L (Z) - (2k + 2) 2k+3 + /:ZO (2] ¥ 1)! b_]+k+lz / )

where
bl a 3m—ZOC n; m+1n

=5 i Z =0, (83)

—00 n=—00 m + ln)6
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3 =
[ — . j=3,4,5,.
T 2i+3)0-2) Z e b

Due to the periodic properties of Weierstrass’s functions, (80) satisfies (78c). It is also obvious that f(z) is an
odd function, the constraint condition (78d) is thus satisfied. Substitution of (81) and (82) into (79) leads to

a set of algebraic equations for 4y, Ay.4, k=0,1,2,... It can be shown that the first N coefficients
F, = Asn, k = 1, N, satisfy the following symmetrical matrix equation
[C](ﬂ;57"'aFN)T:(glagb'“agN)Ta (84)
where
e +3 c2 e Civ
[C] _ [C]T _ Co1 Cc» + 5 ... Con 7 (85)
CN1 CN2 e Ccyv + 2N + 1
_ | (27 + 26)! 0
Cik =Ty W itk — 2+1bbk s (86)
and
2/+2
o
;= b;. 87
g/ TU"O + 1 J ( )

Moreover, A4y is given by

ZE(erﬁ»Zb ‘| (88)

Finally, the local function y can be expressed in terms of coefficients 4, and Fj in the form

e (AO +) rg"”@bk)z
k=1

1 & (4 1 Q426 & 1
4 40 , 2pp |2 242 p
O”ij_;(n2j+1bj+kz_1:(2j+l)(2k)'0 ibjk ZO LT

k=1

Ao =

nr0+1

10n,32) = 1(r, 0) =

(89)
Taking into account of (45) and (71), we arrive at the formula
2n
D= / ridyidy, = / ynids = —ro/ 1(ro, 0) cos 0d0. (90)
% r 0
Substituting (88) and (89) into (90), D can now be expressed in terms of F, and b, as
_ ™ 1—m2—zzoo:Fbr2k+2 (91)
TC}"(% +1 0 £ KOk .
Finally, using the fact that
Dy e (52)

1
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0.25

0.201-
D, 0.15-
0.10+

0.051-

0'08.0

Fig. 3. Change of non-dimensional added fluid area with fluid volume fraction of the bundle.

we obtain the expression for D as a function of the porosity 4 of the bundle as

1-4 = 1—2\""
p=1=%1i 2 Fkbk( ) ] (93)
2—/1[ — T

As 0 < ry < 1/2, the range of A is restricted to 1 — /4 < A< 1.
For the purpose of comparison, numerical computations have been carried out using the following
truncated form:

1—af N 1 — 7\ FH
DN_Z—l [A—Zkl Fkbk< TL > . (94)
With N =1,2,5,6,7, 8, the Dy ~ Acurves are illustrated in Fig. 3. Results show that, for the case of N = 1,
2,5,6,7,as compared with that of N = §, the maximum errors due to truncation for D are 18.16%, 10.09%,
1.91%, 0.996% and 0.398%, respectively. It indicates that N = 5 is sufficient for convergence of the series in
91).
In addition to the above, Zhang (1999) also derived the relationships between the equivalent sound speed
and porosity. In the case where the beams are fixed, the equivalent sound speed is given by

D
Ceq =cCpr[1 — - (95)

and in the case where the beams move in phase with the fluid, the relationship is then

2
= for 1 — 1< 1. (96)

Ceq = Cf

9. Conclusion

A 3-D homogenization model for the beam bundle is given in this paper. The model is formulated in
terms of velocity potential. Only the stress—strain relationship and beam simplifications are needed to
determine the lateral resultant shear, which appears in the second homogenization equation. The axial
components of the constant body force of the beam and the fluid have no influence on the equations. For
the circular cross-sectional beams arranged in tandem, symmetry gives rise to a scalar parameter in the
governing equations having the significance of the added fluid area fraction per single beam. In order to
determine this parameter, a local problem is solved and a closed-form series solution is obtained. The
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proposed method is based on Weierstrass’s periodic functions, which can be used to express the solution as
a rapidly convergent series. In addition, it is found that the scalar parameter D is directly related to the
porosity A of the bundle.

Based on the development in this paper, it will be interesting to extend to bundles with tubes in other
configurations. Also, it would be appropriate to point out that limitation exists in homogenization methods
and it would be necessary to carry out comparisons with experimental data or heterogeneous calculations.
These will form part of the authors’ future work.
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